Ruby  2.5.0dev(2017-10-22revision60238)
lgamma_r.c
Go to the documentation of this file.
1 /* lgamma_r.c - public domain implementation of function lgamma_r(3m)
2 
3 lgamma_r() is based on gamma(). modified by Tanaka Akira.
4 
5 reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
6  (New Algorithm handbook in C language) (Gijyutsu hyouron
7  sha, Tokyo, 1991) [in Japanese]
8  http://oku.edu.mie-u.ac.jp/~okumura/algo/
9 */
10 
11 #include "ruby/missing.h"
12 /***********************************************************
13  gamma.c -- Gamma function
14 ***********************************************************/
15 #include <math.h>
16 #include <errno.h>
17 #define PI 3.14159265358979324 /* $\pi$ */
18 #define LOG_2PI 1.83787706640934548 /* $\log 2\pi$ */
19 #define LOG_PI 1.14472988584940017 /* $\log_e \pi$ */
20 #define N 8
21 
22 #define B0 1 /* Bernoulli numbers */
23 #define B1 (-1.0 / 2.0)
24 #define B2 ( 1.0 / 6.0)
25 #define B4 (-1.0 / 30.0)
26 #define B6 ( 1.0 / 42.0)
27 #define B8 (-1.0 / 30.0)
28 #define B10 ( 5.0 / 66.0)
29 #define B12 (-691.0 / 2730.0)
30 #define B14 ( 7.0 / 6.0)
31 #define B16 (-3617.0 / 510.0)
32 
33 static double
34 loggamma(double x) /* the natural logarithm of the Gamma function. */
35 {
36  double v, w;
37 
38  if (x == 1.0 || x == 2.0) return 0.0;
39 
40  v = 1;
41  while (x < N) { v *= x; x++; }
42  w = 1 / (x * x);
43  return ((((((((B16 / (16 * 15)) * w + (B14 / (14 * 13))) * w
44  + (B12 / (12 * 11))) * w + (B10 / (10 * 9))) * w
45  + (B8 / ( 8 * 7))) * w + (B6 / ( 6 * 5))) * w
46  + (B4 / ( 4 * 3))) * w + (B2 / ( 2 * 1))) / x
47  + 0.5 * LOG_2PI - log(v) - x + (x - 0.5) * log(x);
48 }
49 
50 
51 #ifdef __MINGW_ATTRIB_PURE
52 /* get rid of bugs in math.h of mingw */
53 #define modf(_X, _Y) __extension__ ({\
54  double intpart_modf_bug = intpart_modf_bug;\
55  double result_modf_bug = modf((_X), &intpart_modf_bug);\
56  *(_Y) = intpart_modf_bug;\
57  result_modf_bug;\
58 })
59 #endif
60 
61 /* the natural logarithm of the absolute value of the Gamma function */
62 double
63 lgamma_r(double x, int *signp)
64 {
65  if (x <= 0) {
66  double i, f, s;
67  f = modf(-x, &i);
68  if (f == 0.0) { /* pole error */
69  *signp = signbit(x) ? -1 : 1;
70  errno = ERANGE;
71  return HUGE_VAL;
72  }
73  *signp = (fmod(i, 2.0) != 0.0) ? 1 : -1;
74  s = sin(PI * f);
75  if (s < 0) s = -s;
76  return LOG_PI - log(s) - loggamma(1 - x);
77  }
78  *signp = 1;
79  return loggamma(x);
80 }
double lgamma_r(double x, int *signp)
Definition: lgamma_r.c:63
#define B12
Definition: lgamma_r.c:29
RUBY_EXTERN int signbit(double x)
Definition: signbit.c:5
#define N
Definition: lgamma_r.c:20
#define B6
Definition: lgamma_r.c:26
#define PI
Definition: lgamma_r.c:17
#define LOG_PI
Definition: lgamma_r.c:19
#define B8
Definition: lgamma_r.c:27
#define B10
Definition: lgamma_r.c:28
int errno
#define f
#define B2
Definition: lgamma_r.c:24
#define B14
Definition: lgamma_r.c:30
#define LOG_2PI
Definition: lgamma_r.c:18
#define B4
Definition: lgamma_r.c:25
#define B16
Definition: lgamma_r.c:31