Ruby  2.5.0dev(2017-10-22revision60238)
erf.c
Go to the documentation of this file.
1 /* erf.c - public domain implementation of error function erf(3m)
2 
3 reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
4  (New Algorithm handbook in C language) (Gijyutsu hyouron
5  sha, Tokyo, 1991) p.227 [in Japanese] */
6 #include "ruby/missing.h"
7 #include <stdio.h>
8 #include <math.h>
9 
10 #ifdef _WIN32
11 # include <float.h>
12 # if !defined __MINGW32__ || defined __NO_ISOCEXT
13 # ifndef isnan
14 # define isnan(x) _isnan(x)
15 # endif
16 # ifndef isinf
17 # define isinf(x) (!_finite(x) && !_isnan(x))
18 # endif
19 # ifndef finite
20 # define finite(x) _finite(x)
21 # endif
22 # endif
23 #endif
24 
25 static double q_gamma(double, double, double);
26 
27 /* Incomplete gamma function
28  1 / Gamma(a) * Int_0^x exp(-t) t^(a-1) dt */
29 static double p_gamma(double a, double x, double loggamma_a)
30 {
31  int k;
32  double result, term, previous;
33 
34  if (x >= 1 + a) return 1 - q_gamma(a, x, loggamma_a);
35  if (x == 0) return 0;
36  result = term = exp(a * log(x) - x - loggamma_a) / a;
37  for (k = 1; k < 1000; k++) {
38  term *= x / (a + k);
39  previous = result; result += term;
40  if (result == previous) return result;
41  }
42  fprintf(stderr, "erf.c:%d:p_gamma() could not converge.", __LINE__);
43  return result;
44 }
45 
46 /* Incomplete gamma function
47  1 / Gamma(a) * Int_x^inf exp(-t) t^(a-1) dt */
48 static double q_gamma(double a, double x, double loggamma_a)
49 {
50  int k;
51  double result, w, temp, previous;
52  double la = 1, lb = 1 + x - a; /* Laguerre polynomial */
53 
54  if (x < 1 + a) return 1 - p_gamma(a, x, loggamma_a);
55  w = exp(a * log(x) - x - loggamma_a);
56  result = w / lb;
57  for (k = 2; k < 1000; k++) {
58  temp = ((k - 1 - a) * (lb - la) + (k + x) * lb) / k;
59  la = lb; lb = temp;
60  w *= (k - 1 - a) / k;
61  temp = w / (la * lb);
62  previous = result; result += temp;
63  if (result == previous) return result;
64  }
65  fprintf(stderr, "erf.c:%d:q_gamma() could not converge.", __LINE__);
66  return result;
67 }
68 
69 #define LOG_PI_OVER_2 0.572364942924700087071713675675 /* log_e(PI)/2 */
70 
71 double erf(double x)
72 {
73  if (!finite(x)) {
74  if (isnan(x)) return x; /* erf(NaN) = NaN */
75  return (x>0 ? 1.0 : -1.0); /* erf(+-inf) = +-1.0 */
76  }
77  if (x >= 0) return p_gamma(0.5, x * x, LOG_PI_OVER_2);
78  else return - p_gamma(0.5, x * x, LOG_PI_OVER_2);
79 }
80 
81 double erfc(double x)
82 {
83  if (!finite(x)) {
84  if (isnan(x)) return x; /* erfc(NaN) = NaN */
85  return (x>0 ? 0.0 : 2.0); /* erfc(+-inf) = 0.0, 2.0 */
86  }
87  if (x >= 0) return q_gamma(0.5, x * x, LOG_PI_OVER_2);
88  else return 1 + p_gamma(0.5, x * x, LOG_PI_OVER_2);
89 }
double erf(double x)
Definition: erf.c:71
RUBY_EXTERN int finite(double)
Definition: finite.c:6
const char term
Definition: id.c:37
#define LOG_PI_OVER_2
Definition: erf.c:69
#define isnan(x)
Definition: win32.h:346
double erfc(double x)
Definition: erf.c:81